Search results for "D-amino acid oxidase"

showing 2 items of 2 documents

Biochemical Properties of Human D-Amino Acid Oxidase

2017

D-amino acid oxidase catalyzes the oxidative deamination of D-amino acids. In the brain, the NMDA receptor coagonist D-serine has been proposed as its physiological substrate. In order to shed light on the mechanisms regulating D-serine concentration at the cellular level, we biochemically characterized human DAAO (hDAAO) in greater depth. In addition to clarify the physical-chemical properties of the enzyme, we demonstrated that divalent ions and nucleotides do not affect flavoenzyme function. Moreover, the definition of hDAAO substrate specificity demonstrated that D-cysteine is the best substrate, which made it possible to propose it as a putative physiological substrate in selected tiss…

0301 basic medicinestructure-function relationshipssubstrate specificityD-amino acid oxidaseD-serineGenetics and Molecular Biology (miscellaneous)Flavin groupBiochemistry Genetics and Molecular Biology (miscellaneous)BiochemistryCofactor03 medical and health sciencesMolecular BiosciencesMolecular Biologylcsh:QH301-705.5D-cysteineOriginal Researchchemistry.chemical_classificationbiologyActive siteSubstrate (chemistry)Oxidative deaminationLigand (biochemistry)Amino acidD-amino acid oxidase; D-cysteine; D-serine; structure-function relationships; substrate specificity030104 developmental biologyBiochemistrychemistrylcsh:Biology (General)biology.proteinD-amino acid oxidase; D-cysteine; D-serine; Structure-function relationships; Substrate specificity; Molecular Biology; Biochemistry; Biochemistry Genetics and Molecular Biology (miscellaneous)D-amino acid oxidaseFrontiers in Molecular Biosciences
researchProduct

Human D-Amino Acid Oxidase: Structure, Function, and Regulation

2018

D-Amino acid oxidase (DAAO) is an FAD-containing flavoenzyme that catalyzes with absolute stereoselectivity the oxidative deamination of all natural D-amino acids, the only exception being the acidic ones. This flavoenzyme plays different roles during evolution and in different tissues in humans. Its three-dimensional structure is well conserved during evolution: minute changes are responsible for the functional differences between enzymes from microorganism sources and those from humans. In recent years several investigations focused on human DAAO, mainly because of its role in degrading the neuromodulator D-serine in the central nervous system. D-Serine is the main coagonist of N-methyl D…

0301 basic medicinestructure-function relationshipssubstrate specificityD-amino acid oxidaseD-serineReviewFlavin groupBiochemistry Genetics and Molecular Biology (miscellaneous)BiochemistryCofactor03 medical and health sciences0302 clinical medicineMolecular BiosciencesReceptorlcsh:QH301-705.5Molecular Biologychemistry.chemical_classificationOxidase testbiologyOxidative deaminationNMDA receptorAmino acid030104 developmental biologyEnzymelcsh:Biology (General)chemistryBiochemistrybiology.proteinD-amino acid oxidase030217 neurology & neurosurgery
researchProduct